Cresol / Cresylic Acid – Guide to Hazardous Air Pollutants used by the Irish Air Corps

Cresol / Cresylic Acid

o-CRESOL, m-CRESOL, p-CRESOL

Cresylic Acid spilled all over the floor of the NDT shop of ERF and indeed dribbling down the wall from the extractor fan.

CAS  1319-77-3 , 95-48-7, 108-39-4, 106-44-5

Hazard Summary

Ambient air contains low levels of cresols from automobile exhaust, power plants, and oil refineries. Acute (short-term) inhalation exposure by humans to mixed cresols results in respiratory tract irritation, with symptoms such as dryness, nasal constriction, and throat irritation.  Mixed cresols are also strong dermal irritants.

No information is available on the chronic (long-term) effects of mixed cresols in humans, while animal studies have reported effects on the blood, liver, kidney, and central nervous system (CNS), and reduced body weight, from oral and inhalation exposure to mixed cresols.

Several animal studies suggest that o-cresol, m-cresol, and p-cresol may act as tumor promotors.  EPA has classified o-cresol, m-cresol, and p-cresol as Group C, possible human carcinogens.

Please Note: The main sources of information for this fact sheet are EPA's IRIS (4), which contains information on oral chronic toxicity and the RfD, and the carcinogenic effects of cresols, and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profile for Cresols. (1)

Uses

  • Mixed cresols are used as disinfectants, preservatives, and wood preservatives. (1)
  • o-Cresol is used as a solvent, disinfectant, and chemical intermediate. (1)
  • m-Cresol is used to produce certain herbicides, as a precursor to the pyrethroid insecticides, to produce antioxidants, and to manufacture the explosive, 2,4,6-nitro-m-cresol. (1)
  • p-Cresol is used largely in the formulation of antioxidants and in the fragrance and dye industries. (1)

Sources and Potential Exposure

  • Mixed cresols may be found in ambient air; sources are car exhaust, electrical power plants, municipal solid waste incinerators, oil refineries, and cigarettes. (1)
  • People in residential areas where homes are heated with coal, oil, or wood may be exposed to mixed cresols in the air. (1)
  • Some foods, such as tomatoes, ketchup, asparagus, cheeses, butter, bacon, and smoked foods, as well as beverages, such as red wine, raw and roasted coffee and black tea, contain mixed cresols. (1)
  • Occupational exposure to mixed cresols may also occur at workplaces where mixed cresols and/or cresol containing products are produced or used. (1)

Assessing Personal Exposure

  • Mixed cresols can be measured in the urine of exposed individuals.

Health Hazard Information

Acute Effects:

  • Acute inhalation exposure by humans to mixed cresols results in respiratory tract irritation, with symptoms such as dryness, nasal constriction, and throat irritation.  Mixed cresols are also strong dermal irritants. Ingestion of high levels of mixed cresols by humans has resulted in effects on the respiratory system, gastrointestinal system, blood, liver, kidney, and CNS. (1,2)
  • Animal studies have reported respiratory tract and eye irritation, and effects on the liver, kidney, and CNS from acute inhalation exposure to mixed cresols. (1)
  • Acute animal tests in rats have shown mixed cresols to have moderate acute toxicity, while o-cresol, m-cresol, and p-cresol have been shown to have high acute toxicity from oral exposure. (3)

Chronic Effects (Noncancer):

  • No information is available on the chronic effects of mixed cresols in humans. (1)
  • Animal studies have reported effects on the blood, liver, kidney, and CNS, as well as reduced body weight, from oral and inhalation exposure to mixed cresols. (1,5)
  • EPA has not established a Reference Concentration (RfC) or a Reference Dose (RfD) for mixed cresols. (4)
  • The California Environmental Protection Agency 3  (CalEPA) has established a chronic reference exposure level of 0.004 milligrams per cubic meter (mg/m ) for mixed cresols based on bone marrow effects in rats. The CalEPA reference exposure level is a concentration at or below which adverse health effects are not likely to occur. It is not a direct estimator of risk, but rather a reference point to gauge the potential effects. At lifetime exposures increasingly greater than the reference exposure level, the potential for adverse health effects increases. (5)
  • EPA has not established an RfC for o-, m-, or p-cresol.  (5-7)
  • The RfD for o-cresol and m-cresol is 0.05 milligrams per kilogram body weight per day (mg/kg/d) based on decreased body weights and neurotoxicity in rats. The RfD is an estimate (with uncertainty spanning
    perhaps an order of magnitude) of a daily oral exposure to the human population (including sensitive subgroups) that is likely to be without appreciable risk of deleterious noncancer effects during a lifetime. (5,6)
  • EPA has high confidence in the studies on which the RfDs are based because they provided adequate toxicological endpoints that included both general toxicity and neurotoxicity; medium confidence in the database because there are adequate supporting subchronic studies but lacking chronic toxicity and reproductive studies; and, consequently, medium confidence in the RfD. (5,6)
  • The provisional RfD for p-cresol is 0.005 mg/kg/d based on neurological and respiratory effects in rabbits. The provisional RfD is a value that has had some form of Agency review, but it does not appear on IRIS. (8)

Reproductive/Developmental Effects:

  • No information is available on the reproductive or developmental effects of mixed cresols in humans. (1)
  • Animal studies have reported developmental effects, but only at maternally toxic doses, and no reproductive effects from oral exposure to mixed cresols. (1)

Cancer Risk:

  • Only anecdotal information is available on the carcinogenic effects of mixed cresols in humans. (4-7)
  • The only available oral animal study is a 13-week study that suggested that p-cresol may act as a promotor for tumors of the forestomach. (1)
  • Several dermal animal studies have suggested that o-cresol, m-cresol, and p-cresol may act as tumor promotors. (1,4-7)
  • EPA has classified o-cresol, m-cresol, and p-cresol as Group C, possible human carcinogens. (5-7)

Physical Properties

  • Mixed cresols are colorless solids, but usually they occur as a brown liquid mixture. (1)
  • Mixed cresols have a medicinal odor; the odor thresold for m-cresol is 0.00028 parts per million (ppm). (1,9)
  • The chemical formula for cresol is C 7 H 8 O, and the molecular weight is 108.14 g/mol. (1)
  • The primary synonym for o-cresol is 2-methylphenol; m-cresol is 3-methylphenol, and p-cresol is 4-methylphenol. (5-7)
  • The vapor pressures, at 25 °C, for o-cresol, m-cresol, and p-cresol are 0.299 mm Hg, 0.138 mm Hg, and 0.11 mm Hg, respectively. (1)
  • The octanol/water partition coefficients (log K ow) for o-cresol, m-cresol, and p-cresol are 1.95, 1.96, and 1.94, respectively. (1)

Read the full EPA PDF on the above Hazardous Air Pollutant with references below.

*****

Relavance to personnel who served in the Air Corps

  1. Cresylic Acid is  component of Ardrox 666
  2. Cresols are consitituent chemicals of turbine engine oils. e.g. Tri-cresyl phosphate which is an organophosphate.

There are likely many more chemicals used by the Air Corps that contain Benzene. If you know of some let us know in the comments section.

Benzene – Guide to Hazardous Air Pollutants used by the Irish Air Corps

Benzene

CAS  71-43.2

Hazard Summary

Benzene is found in the air from emissions from burning coal and oil, gasoline service stations, and motor vehicle exhaust. Acute (short-term) inhalation exposure of humans to benzene may cause drowsiness,  dizziness, headaches, as well as eye, skin, and respiratory tract irritation, and, at high levels, unconsciousness. Chronic (long-term) inhalation exposure has caused various disorders in the blood, including reduced numbers of red blood cells and aplastic anemia, in occupational settings.   Reproductive effects have been reported for women exposed by inhalation to high levels, and adverse effects on the developing fetus have been observed in animal tests. Increased incidence of leukemia (cancer of the tissues that form white blood cells) have been observed in humans occupationally exposed to benzene. EPA has classified benzene as known human carcinogen for all routes of exposure.

Please Note: The main sources of information for this fact sheet are the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profile for Benzene (1) and EPA's Integrated Risk Information System (IRIS) (4),which contains information on the health effects of benzene including the unit cancer risk for inhalation
exposure.

Uses

  • Benzene is used as a constituent in motor fuels; as a solvent for fats, waxes, resins, oils, inks, paints, plastics, and rubber; in the extraction of oils from seeds and nuts; and in photogravure printing. It is also used as a chemical intermediate. Benzene is also used in the manufacture of detergents, explosives, pharmaceuticals, and dyestuffs. (1,2,6)

Sources and Potential Exposure

  • Individuals employed in industries that manufacture or use benzene may be exposed to the highest levels of benzene. (1)
  • Benzene is found in emissions from burning coal and oil, motor vehicle exhaust, and evaporation from gasoline service stations and in industrial solvents. These sources contribute to elevated levels of benzene in the ambient air, which may subsequently be breathed by the public. (1)
  • Tobacco smoke contains benzene and accounts for nearly half the national exposure to benzene. (1)
  • Individuals may also be exposed to benzene by consuming contaminated water. (1)

Assessing Personal Exposure

Measurement of benzene in an individual’s breath or blood or the measurement of breakdown products in the urine (phenol) can estimate personal exposure. However, the tests must be done shortly after exposure
and are not helpful for measuring low levels of benzene. (1)

Health Hazard Information

Acute Effects:

  • Coexposure to benzene with ethanol (e.g., alcoholic beverages) can increase benzene toxicity in humans. (1)
  • Neurological symptoms of inhalation exposure to benzene include drowsiness, dizziness, headaches, and Neurological symptoms of inhalation exposure to benzene include drowsiness, dizziness, headaches, and unconsciousness in humans.  Ingestion of large amounts of benzene may result in vomiting, dizziness, and convulsions in humans. (1)
  • Exposure to liquid and vapor may irritate the skin, eyes, and upper respiratory tract in humans.  Redness and blisters may result from dermal exposure to benzene. (1,2)
  • Animal studies show neurologic, immunologic, and hematologic effects from inhalation and oral exposure to benzene. (1)
  • Tests involving acute exposure of rats, mice, rabbits, and guinea pigs have demonstrated benzene to have low acute toxicity from inhalation, moderate acute toxicity from ingestion, and low or moderate acute toxicity from dermal exposure. (3)
  • The reference concentration for benzene is 0.03 mg/m3 based on hematological effects in humans. The RfC is an estimate (with uncertainty spanning perhaps an order of magnitude) of a continuous inhalation
    exposure to the human population (including sensitive groups) that is likely to be without appreciable risk deleterious noncancer effects over a lifetime. (4)

Chronic Effects (Noncancer):

  • Chronic inhalation of certain levels of benzene causes disorders in the blood in humans. Benzene specifically affects bone marrow (the tissues that produce blood cells). Aplastic anemia (a risk factor for acute nonlymphocytic leukemia), excessive bleeding, and damage to the immune system (by changes in blood levels of antibodies and loss of white blood cells) may develop. (1)
  • In animals, chronic inhalation and oral exposure to benzene produces the same effects as seen in humans. (1)
  • Benzene causes both structural and numerical chromosomal aberrations in humans. (1)
  • EPA has established an oral Reference Dose (RfD) for benzene of 0.004 milligrams per kilogram per day (mg/kg/d) based on hematological effects in humans. The RfD is an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily oral exposure to the human population (including sensitive subgroups) that is likely to be without appreciable risk of deleterious noncancer effects during a lifetime. It is not a direct estimator of risk, but rather a reference point to gauge the potential for effects. At exposures increasingly greater than the RfD, the potential for adverse health effects increases. Lifetime exposure above the RfD does not imply that an adverse health effect would necessarily occur. (4)
  • EPA has established a Reference Concentration (RfC) of 0.03 milligrams per cubic meter (0.03 mg/m3) for benzene based on hematological effects in humans. The RfC is an inhalation exposure concentration at or below which adverse health effects are not likely to occur. It is not a direct estimator of risk, but rather a reference point to gauge the potential for effects. At lifetime exposures increasingly greater than the reference exposure level, the potential for adverse health effects increases. (4)

Reproductive/Developmental Effects:

  • There is some evidence from human epidemiological studies of reproductive and developmental toxicity of benzene, however the data do not provide conclusive evidence of a link between exposure and effect. (4)
    Animal studies have provided limited evidence that exposure to benzene may affect reproductive organs, however these effects were only observed at exposure levels over the maximum tolerated dose. (4)
  • Adverse effects on the fetus, including low birth weight, delayed bone formation, and bone marrow damage, have been observed where pregnant animals were exposed to benzene by inhalation.(4)

Cancer Risk:

  • Increased incidence of leukemia (cancer of the tissues that form white blood cells) has been observed in humans occupationally exposed to benzene. (1,4)
  • EPA has classified benzene as a Group A, known human carcinogen. (4)
  • EPA uses mathematical models, based on human and animal studies,to estimate the probability of a person developing cancer from breathing air containing a specified concentration of a chemical. EPA calculated a range of 2.2 x 10 -6  to 7.8 x 10 -6  as the increase in the lifetime risk of an individual who is continuously exposed to 1 µg/m3 of benzene in the air over their lifetime.
  • EPA estimates that, if an individual were to continuously breathe the air containing benzene at an average of 0.13 to 0.45 µg/m 3  (1.3×10 -4  to 4.5x -4mg/m 3 ) over his or her entire lifetime, that person would theoretically have no more than a one-in-a-million increased chance of developing cancer as a direct result of continuously breathing air containing this chemical. Similarly, EPA estimates that continuously breathing air containing 1.3 to 4.5 µg/m 3 (1.3×10 -3  to 4.5×10 -3  mg/m 3 ) would result in not greater than a one-in-ahundred thousand increased chance of developing cancer, and air containing 13 to 45 µg/m3  (1.3 x 10 – 2  to 4.5 x 10-2 mg/m3) would result in not greater than a one-in-ten thousand increased chance of developing cancer. For a detailed discussion of confidence in the potency estimates, please see IRIS.(4)
  • EPA has calculated an oral cancer slope factor ranging from 1.5 x 10-2  to 5.5 x 10 -2 (mg/kg/d)-1  that is an extrapolation from inhalation dose-response data. (4)

Physical Properties

  • The chemical formula for benzene is C6H6, and it has a molecular weight of 78.11 g/mol. 4) Benzene occurs as a volatile, colorless, highly flammable liquid that dissolves easily in water. (1,7)
  • Benzene has a sweet odor with an ASTDR reported odor threshold of 1.5 ppm (5 mg/m3).
  • The vapor pressure for benzene is 95.2 mm Hg at 25 °C, and it has a log octanol/water partition coefficient (log Kow) of 2.13. (1)

Read the full EPA PDF on the above Hazardous Air Pollutant with references below.

*****

Relavance to personnel who served in the Air Corps

  1. Benzene is a component of Jet A1 (AVTUR) and/or Jet A1 exhaust 
  2. Benzene is a component of 100LL (AVGAS) and/or 100LL exhaust
  3. Cellulose Thinners used in spray painting contain Benzene
  4. Akzo Nobel Hardner S66/22R contains <25% Benzene
  5. Mastinox 6856k contains 1-3% Benzene

There are likely many more chemicals used by the Air Corps that contain Benzene. If you know of some let us know in the comments section.

Asbestos – Guide to Hazardous Air Pollutants used by the Irish Air Corps

Asbestos

CAS  1332-21-4

Hazard Summary

Asbestos production and use has decreased dramatically over the years in the United States. Exposure to asbestos may occur from ambient air, indoor air, or water. Effects on the lung are a major health concern from asbestos, as chronic (long-term) exposure to asbestos in humans via inhalation can result in a lung disease termed asbestosis. Asbestosis is characterized by shortness of breath and cough and may lead to severe impairment of respiratory function. Cancer is also a major concern associated with asbestos exposure, as inhalation exposure causes lung cancer and mesothelioma (a rare cancer of the thin membranes lining the abdominal cavity and surrounding internal organs), and possibly stomach, laryngeal, and colorectal cancer. EPA has classified asbestos as a Group A, known human carcinogen.

Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (2), which contains information on the carcinogenic effects of asbestos including the unit cancer risk for inhalation exposure, and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profile for Asbestos. (1)

Uses

  • Asbestos production and use in the U.S. has decreased dramatically over the years due to healthconcerns and regulations banning its use. (1)
  • U.S. production of asbestos decreased from 300 million pounds in 1973 to 6 million pounds in 2002. (3)
  • In 2010, there were two U.S. suppliers of asbestos and most of the asbestos used in the U.S. is imported from Canada. (3)
  • Asbestos has been used in building materials, paper products, asbestos-cement products, friction products, textiles, packings and gaskets, and asbestos-reinforced plastics. (1,4)
  • Many uses have been prohibited, including the spraying of asbestos-containing material on buildings and structures for fireproofing, insulation and decorative purposes, asbestos inclusion in patching compounds and asbestos heat shields in hair dryers. Asbestos substitutes continue to be developed. For example, nonasbestos friction materials are currently being used in disc brake pads, and substitutes have been developed for drum brake linings. (1)

Sources and Potential Exposure

  • Airborne exposure to asbestos may occur through the erosion of natural deposits in asbestos bearing rocks, from a variety of asbestos-related industries, or from clutches and brakes on cars and trucks. The concentrations in outdoor air are highly variable. (1,4)
  • Asbestos has been detected in indoor air, where it is released from a variety of building materials such as insulation and ceiling and floor tiles. It is only released, however, when these building materials are damaged or disintegrate. (1)
  • Asbestos may be released into water from a number of sources, including erosion of natural deposits, corrosion from asbestos-cement pipes, and disintegration of asbestos roofing materials with subsequent transport into sewers. (1,4)

Health Hazard Information

Acute Effects:

  • No studies were located on the acute (short-term) toxicity of asbestos in animals or humans. (1)

Chronic Effects (Noncancer):

  • Chronic inhalation exposure to asbestos in humans can lead to a lung disease called asbestosis, which consists of a diffuse fibrous scarring of the lungs. Symptoms of asbestosis include shortness of breath, difficulty in breathing, and coughing. Asbestosis is a progressive disease, i.e., the severity of symptoms tends to increase with time, even after the exposure has stopped. In severe cases, this disease can lead to death, due to impairment of respiratory function. (1,2)
  • Other effects from asbestos exposure via inhalation in humans include pulmonary hypertension and immunological effects. (1,2)
  • Feeding studies in animals exposed to high doses of asbestos have not detected any evidence of adverse toxic effects. (1,2)
  • EPA has not established a Reference Concentration (RfC) or a Reference Dose (RfD) for asbestos. (2)

Reproductive/Developmental Effects:

  • No studies were located on the developmental or reproductive effects of asbestos in animals or humans via inhalation. (1)
  • Birth defects were not noted in the offspring of animals exposed to asbestos in the diet during pregnancy. (1)
  • No effects on fertility were observed in animals exposed to asbestos in the diet during breeding, pregnancy, and lactation. (1)

Cancer Risk:

  • A large number of occupational studies have reported that exposure to asbestos via inhalationcauses lung cancer and mesothelioma (a rare cancer of the membranes lining the abdominal cavity and surrounding internal organs). (1,2,3)
  • Individuals who smoke and are also exposed to asbestos have a greater than additive increased risk of developing lung cancer. (1,2,3)
  •  Long and intermediate-range asbestos fibers (>5 micrometers (µm)) appear to be more carcinogenic than short fibers (<5 µm). (1)
  • Some occupational studies have reported an increased risk of stomach, laryngeal, or colorectal cancer from asbestos exposure. However, the data are not as strong as that for lung cancer and mesothelioma. (1)
  • Epidemiological studies have not found a clear association between asbestos exposure in drinking water and an increased risk of stomach cancer. (1,2,3)
  • A series of large-scale lifetime feeding studies in animals reported that exposure to intermediate-range asbestos fibers increased the incidence of a benign tumor of the large intestine in male rats, while short-range asbestos fibers showed no significant increase in tumor incidence. (1)
  • EPA has classified asbestos as Group A, human carcinogen. (2)
  • EPA uses mathematical models, based on human and animal studies, to estimate the probability of a person developing cancer from breathing air containing a specified concentration of a chemical. EPA calculated an inhalation unit risk estimate of 2.3 × 10-1 (fibers/cm3)-1. EPA eestimates that, if an individual were to continuously breathe air containing asbestos at an average of 0.000004 fibers/cm3 over his or her entire lifetime, that person would theoretically have no more than a one-in-a-million  increased chance of developing cancer as a direct result of breathing air containing this chemical. Similarly, EPA estimates that breathing air containing 0.00004 fibers/cm3 would result in not greater than a one-in-a-hundred thousand increased chance of developing cancer, and air containing 0.0004 fibers/cm3 would result in not greater than a one-in-ten-thousand increased chance of developing cancer. (2)

Physical Properties

  • Asbestos is the name applied to a group of six different fibrous silicate minerals that occur naturally in the environment. (1)
  • There are two groups of asbestos minerals: serpentine and amphibole. There are also nonfibrous forms of serpentine and amphibole which are not asbestos. (1)
  • Serpentine asbestos are relatively long and flexible crystalline fibers that may be woven, and includes the mineral chrysotile, and amphibole asbestos are more brittle than serpentine asbestos and includes the minerals amosite, crocidolite, tremolite, anthophyllite, and actinolite. (1)
  • Asbestos is neither volatile nor soluble; however, small fibers may occur in suspension in both air and water. (1)

Read the full EPA PDF on the above Hazardous Air Pollutant with references below.

*****

Relavance to personnel who served in the Air Corps

  1. Pipework in a number of Air Corps buildings was lagged with Asbestos most notably the Apprentice hostel was lagged with badly damaged Asbestos until the early 1990s. So every apprentice who served from approximately the 55th Apprentice Class and before was exposed to asbestos in their sleeping environment.
  2. The apprentice hangar roof was made from asbestos.
  3. Parts of engine shop ceiling was discovered to be made from asbestos when it partially collapsed and dislocated the shoulder of a machinist working beneath it.
  4. The fire crew wore special fire suits made from asbestos. 

It is likely that we have missed many areas of asbestos usage  in both Baldonnel and Gormanston aerodromes so please help us by listing usage locations in comments section below.

Illnesses linked to Trichloroethylene (TCE)

Illnesses linked to Trichloroethylene (TCE) aka TRIKE

https://www.healthandenvironment.org/our-work/toxicant-and-disease-database/?showcategory=&showdisease=&showcontaminant=2341&showcas=&showkeyword=

Solvent exposure and Parkinson’s disease

Shaun Wood worked was a painter and finisher  at Royal Air Force (RAF) bases across the world. During the early 1990s he was involved in the very intensive work preparing Tornado aircraft for the first Gulf War, in particular gluing anti-missile patches to the aircraft. This work was often done in confined spaces over long working hours.  He generally wore a respirator but these were not really adequate for the circumstances.

German Tornado Undergoing Maintenance

Shaun has been diagnosed with Multiple System Atrophy (MSA), which is a debilitating Parkinsonian syndrome that affects the nervous system. He is just 53 years of age.

Throughout his work Shaun was exposed to various solvents, but primarily trichloroethylene and dichloromethane. There is not a great deal of information about exposure to these solvents in aircraft maintenance. I have seen results from a survey carried out at an RAF base in Scotland where dichloromethane levels were measured during paint striping in the cockpit area of a Nimrod aircraft. There was only 1.5 m2 of paint removed, but the peak air concentrations were about 700 mg/m3. Results from three monitoring surveys where the British Health and Safety Executive sampled for dichloromethane during paint stripping on aircraft are shown in the following figure. The mean levels measured in each of these surveys were: 330, 790 and 1,960 mg/m3, and the highest individual level measured was 3,590 mg/m3.

Read full article on OH-world.org A blog about exposure science and occupational hygiene

http://johncherrie.blogspot.ie/2011/12/solvent-exposure-and-parkinsons-disease.html

*****

Below is a photo of one of the locations in the Irish Air Corps that used Dichloromethane, namely the NDT Shop of Engine Repair Flight. Yes that is a stream of the chemicals dripping out of the extractor fan and running down the wall. And yes that is dichloromethane, cresylic acid and the hexavalent sodium chromate all over the floor. The small barrel that is being dissolved by its contents contains Hydrofluoric Acid.

Some extracts from the Ambient Air Monitoring For Health and Safety at Work report dated 2nd August 1995

  1. Dichloromethane levels were measured in the engine shop in Wednesday the 12th and Thursday the 13th of July 1995 at the behest of Captain John Maloney who is still serving in the Irish Air Corps
  2. The level of dichloromethane found in ambient air in the engine
    cleaning area exceeded health and safety limits. 
  3. Levels of Dichloromethane were measured at 175.9ppm (622.5 mg/m3)  while the TWA health & safety limit for this chemical in 1995 was 50ppm.
  4. Significant levels of all parameters monitored were found in nearly all ambient air samples taken in the engine cleaning area.
  5. The ventilation in all areas monitored was deemed to be insufficient. It is thus recommended that mechanical heating and ventilation systems be adapted designed and installed in all areas monitored.

To summarise, the Irish Army Air Corps knew that Dichloromethane levels in the NDT shop in 1995 exceeded health & safety limits by 3.5 times yet officer management

  1. LEFT personnel of all ranks and none to rot in this exceptionally toxic working environment for a further 12 years.
  2. IGNORED the recommendation to design and install design a proper ventilation system, (they stuck in 2 x Xpelairs).
  3. NEVER re-tested the environment to see if the Xpelair fans worked, we suspect they made things worse by increasing evaporation rate.
  4. NEVER informed personnel of enlisted ranks that their workplace was contaminated to dangerous levels.

DELAY – DENY – DIE

Dáil Éireann Debates 07/02/18 – Leaders Questions on Irish Air Corps Toxic Chemical Scandal

Aengus Ó Snodaigh (Dublin South Central, Sinn Fein)

Seven cases are being taken against the State by current and former serving members of the Air Corps. They believe that they have been forced to take this action by the State’s failure to protect them from their exposure to toxic chemicals during their service, which led to serious, chronic and fatal illnesses, including cancer. While those cases will ultimately be dealt with by the courts, that does not prevent the State from taking action. As early as the 1990s, numerous State-commissioned reports highlighted health and safety concerns about chemical exposure at Casement Aerodrome in Baldonnel, but no action was taken at the time. In fact, these reports mysteriously disappeared or were ordered to be shredded. Even after litigation commenced in 2013, basic health and safety precautions were not implemented at Baldonnel. It appears it was only after the Health and Safety Authority conducted an inspection in 2016 that personnel were provided with basic precautions like personal protection equipment such as gloves and overalls.

Hundreds, if not thousands, of personnel who have passed through Baldonnel may be suffering from chronic and even fatal illnesses as a result of exposure to toxic chemicals during their service. There is also a possibility that family members have been affected, as evidence suggests that there is a higher rate of a variety of health conditions among spouses and children, including stillbirths and miscarriages. The Government has taken no action to find out the extent of this scandal or to ascertain how many people might be suffering as a result of it. Instead, it is fighting tooth and nail through the courts to force sick people to take gruelling journeys in search of justice. By comparison, the Australian Government has set up a board of inquiry to conduct a thorough investigation into similar matters. It commissioned a survey of health outcomes for the relevant personnel and their families and put in place a health care system for those who were affected.

As the Taoiseach knows, a protected disclosure from one of the whistleblowers was recently released publicly. It makes for harrowing reading. It lists 56 deaths of former serving Air Corps personnel at an average age of 48. All of the cases listed relate specifically to people who died before they reached the age of 66. The disclosure is based on research done by the whistleblower in the absence of any State-funded investigation into these matters, but it is by no means exhaustive. I believe another number of deaths have been identified since it was published. It is clear that successive Governments have failed in their duty of care to the men and women who served in the Air Corps. This Government has an opportunity to do the right thing. We do not want to be here in ten years’ time with a higher death toll, having failed to address this scandal. Has the Taoiseach read the disclosure? Has he responded to the whistleblower in question? Does he accept that the time has come to order a full inquiry into these matters?

Leo Varadkar, Taoiseach & Minister for Defence (Dublin West, Fine Gael)

As the Deputy said, a number of cases are currently before the courts. While I have absolutely no doubt that the serious ill-health suffered by some former members of the Air Corps is real, it has not been proven whether this array of illnesses could be caused by chemical exposure. Obviously, these cases will be heard in the courts, which will hear all the evidence and, on that basis, make a determination on the claim or allegation that all of these illnesses were caused by chemical exposure. I think that is the right way for this to proceed. The health and well-being of men and women of the Air Corps are, of course, matters of huge concern and interest for the Government.

The Minister of State has ensured that allegations relating to exposure to chemical and toxic substances while working in Baldonnell were independently reviewed. Before considering any further steps, the Minister of State has asked those who made the disclosures for their views. He is examining options for next steps in the process in light of the views he has received from those who made the allegations in the context of ongoing litigation.

The independent report considers the Defence Forces’ health and safety regime and its current policy and application. In respect of historic matters, as litigation had commenced before protected disclosures were made, the report states that the courts are now the most appropriate forum for such matters to be assessed and are the best place to assess all the evidence. Although the report finds that the Defence Forces’ regime appears to be capable of meeting the statutory requirements, it makes a number of observations, including in respect of documentation, health surveillance and exposure monitoring. It also observes that the Health and Safety Authority is the appropriate statutory body to deal with such allegations.

Separately, and in parallel to this independent review, following an inspection in 2016, the Air Corps has continued to work with the Health and Safety Authority to improve its health and safety regime. It should be noted that there is a significant overlap between the recommendations of the HSA and those of the independent reviewer. The military authorities have informed the Minister of State that the HSA has formally noted the high level of co-operation received from the Air Corps and the considerable progress made to date by the Defence Forces towards the implementation of safety management systems for the control of hazardous substances.

Aengus Ó Snodaigh (Dublin South Central, Sinn Fein)

There is no denying that things are better in the Air Corps. However, what the Taoiseach has just read out does not in any way address the legacy of bad management and a bad health and safety record there. I do not know if the Taoiseach remembers that he is also Minister for Defence. He has a direct responsibility to look into these matters. He is also a medical doctor and will understand the list of illnesses that has been provided to his Minister of State, which includes very serious and often fatal conditions, as the other disclosure indicated. We do not know how many people have been exposed in an unprotected way because nobody has carried out a survey. The Australians did not wait for the courts to adjudicate fully, they acted immediately.

There is a list of chemicals, albeit a partial one, which was given to Deputy Lisa Chambers. How many of the people involved have been exposed? As the Taoiseach is aware, if a doctor does not know what people have been exposed to, he cannot help, diagnose, prescribe or direct medical procedures. This is about saving lives. Will the Taoiseach act now not in respect of the specific cases but on the legacy of all of those who are suffering in the general public?

Leo Varadkar, Taoiseach & Minister for Defence (Dublin West, Fine Gael)

The Deputy is absolutely correct; I am Minister for Defence. The Government has delegated responsibility for defence matters to the Minister of State, Deputy Kehoe, whom I fully trust to deal with this issue appropriately.

I am a medical doctor and have seen the list of illnesses that these former members of the Air Corps and their families have suffered. It is a very long and extensive list of illnesses, including the most common illnesses which most people may encounter, namely, cancer, cardiovascular disease, suicide and miscarriages by their partners. As a medical doctor, it is not possible for me to say if exposure to chemicals caused all or any of these illnesses because they are commonplace in the community at large. If it was one specific illness resulting from a known chemical that caused such an illness, that would be one thing. These are not the allegations that are being made, however. There is litigation before the courts, which are best placed to assess the evidence and see whether the allegations are supported by it.

*****

We will follow up the above Dáil debate with a critique of the misleading statements by the Taoiseach, Dr. Leo Varadkar in due course.

DELAY – DENY – DIE

Statistics for Dr. Leo Varadkar showing untimely deaths of Irish Air Corps personnel

A graph showing untimely deaths of men who served in the Irish Air Corps. We are counting those that died since 1980 (arbitrary) and who died on or before age 66 (state pension age).

On Wednesday the 7th of February 2018 in Dáil Éireann, Taoiseach, Dr. Leo Varadkar, said the place to investigate Irish Air Corps related deaths & illnesses was the Irish courts system and also bizarrely questioned why thousands of exposed personnel, exposed to hundreds of different toxic chemicals didn’t all get the same cancer?

Note the graph below only includes personnel for whom we have death certificates for. We are in the process of verifying approximately 30 more deaths, many of which relate to the earlier decades.

In the absence of military or government statistics on untimely deaths in the Irish Air Corps we created our own. We are happy to have these tested or even proven wrong by better statistics gathered by the state in a comprehensive, open and transparent manner. #WeAreNotStatisticians